Discovery of a Bacterial 5-Methylcytosine Deaminase
نویسندگان
چکیده
5-Methylcytosine is found in all domains of life, but the bacterial cytosine deaminase from Escherichia coli (CodA) will not accept 5-methylcytosine as a substrate. Since significant amounts of 5-methylcytosine are produced in both prokaryotes and eukaryotes, this compound must eventually be catabolized and the fragments recycled by enzymes that have yet to be identified. We therefore initiated a comprehensive phylogenetic screen for enzymes that may be capable of deaminating 5-methylcytosine to thymine. From a systematic analysis of sequence homologues of CodA from thousands of bacterial species, we identified putative cytosine deaminases where a "discriminating" residue in the active site, corresponding to Asp-314 in CodA from E. coli, was no longer conserved. Representative examples from Klebsiella pneumoniae (locus tag: Kpn00632), Rhodobacter sphaeroides (locus tag: Rsp0341), and Corynebacterium glutamicum (locus tag: NCgl0075) were demonstrated to efficiently deaminate 5-methylcytosine to thymine with values of kcat/Km of 1.4 × 10(5), 2.9 × 10(4), and 1.1 × 10(3) M(-1) s(-1), respectively. These three enzymes also catalyze the deamination of 5-fluorocytosine to 5-fluorouracil with values of kcat/Km of 1.2 × 10(5), 6.8 × 10(4), and 2.0 × 10(2) M(-1) s(-1), respectively. The three-dimensional structure of Kpn00632 was determined by X-ray diffraction methods with 5-methylcytosine (PDB id: 4R85 ), 5-fluorocytosine (PDB id: 4R88 ), and phosphonocytosine (PDB id: 4R7W ) bound in the active site. When thymine auxotrophs of E. coli express these enzymes, they are capable of growth in media lacking thymine when supplemented with 5-methylcytosine. Expression of these enzymes in E. coli is toxic in the presence of 5-fluorocytosine, due to the efficient transformation to 5-fluorouracil.
منابع مشابه
Measurement of ACC-Deaminase Production in Halophilic, Alkalophilic and Haloalkalophilic Bacterial Isolates in Soil
Strains with 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity can cause plant growth on stress condition. In the presence of bacteria with the ability of ACC deaminase production in the rhizosphere, it is possible to convert the ethylene precursor (ACC) to α-ketobutyrate and ammonium, reducing the ethylene levels in host plants. In order to measure the power and level of A...
متن کاملDNA Demethylation in Zebrafish Involves the Coupling of a Deaminase, a Glycosylase, and Gadd45
Evidence for active DNA demethylation in vertebrates is accumulating, but the mechanisms and enzymes remain unclear. Using zebrafish embryos we provide evidence for 5-methylcytosine (5-meC) removal in vivo via the coupling of a 5-meC deaminase (AID, which converts 5-meC to thymine) and a G:T mismatch-specific thymine glycosylase (Mbd4). The injection of methylated DNA into embryos induced a pot...
متن کاملEvidence for gene silencing by endogenous DNA methylation.
Transformed cells can spontaneously silence genes by de novo methylation, and it is generally assumed that this is due to DNA methyltransferase activity. We have tested the alternative hypothesis that gene silencing could be due to the uptake of 5-methyl-dCMP into DNA, via the di- and triphosphonucleotides. 5-Methyl-dCMP would be present in cells from the ongoing repair of DNA. We have isolated...
متن کاملInhibition of Nucleic Acid Methylation by Cordycepin
Cell-free extracts of cultured WI-L2 human lymphoblasts catalyze the synthesis of S-3’-deoxyadenosyl-~methionine (3”dAdoMet) and s-S’-[9-@-~-arabinofuranosyl)adenyl]-L-methionine (ara-AdoMet) from L-methionine and either cordycepin triphosphate (3’-deoxyadenosine 5’-triphosphate) or adenine 9-fl-D-arabinofuranoside 5’-triphosphate (ara-ATP), respectively. The enzyme responsible for this reactio...
متن کاملDNA Cytosine Demethylation: Are We Getting Close?
Whether 5-methylcytosine (meC) can be enzymatically removed from vertebrate DNA has been the subject of extensive study and also some controversy. Rai et al. (2008) now report that cytosine demethylation can be accomplished in a one-cell zebrafish embryo by the combined action of a cytidine deaminase and a thymine DNA glycosylase.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 53 شماره
صفحات -
تاریخ انتشار 2014